تعريف الدالة كثيرة الحدود
مرحبا طلاب العلم في موقع لمحه معرفة ، والذي يسعي لنجاحكم وحصولكم علي اعلي الدرجات في كافة اختبارات لمحه دروس مدرستي
تعريف الدالة كثيرة الحدود
ولكم الأن إجابة السؤال كما عودناكم متابعينا الزوار في موقع لمحة معرفة المفظل لديكم لحل سؤالكم هذا..تعريف الدالة كثيرة الحدود.. نجد الكثير من الباحثين عن الإجابة النموذجية والصحيحة كما نقدمها لكم من مصدرها الصحيح كالاتي لحل السؤال الذي يقول.
تعريف الدالة كثيرة الحدود
الإجابة هي ::
تعريف الدالة كثيرة الحدود
عند عمل بحث عن كثيرات الحدود نجدها تعبيرات جبرية يتم إنشاؤها بواسطة إضافة أو طرح المصطلحات أحادية الحدود، أو أكثر من المعاملات والمتغيرات، مثل 3x^2 ، حيث أنه تعتبر الأسس أعداد صحيحة فقط، فالدالات هي نوع معين من العلاقات يكون لكل قيمة إدخال فيها قيمة إخراج واحدة فقط، وتشتمل على مصطلحين جبريين أو أكثر، ويكون دائماً مجموع المصطلحات التي تكون ذات قوى مختلفة الأس للمتغيرات، وتستخدم دوال كثيرات الحدود في حياتنا بشكل كبير.[1]
تُبنى كثيرات الحدود عن طريق عمليات الطرح والضرب والجمع، بالإضافة إلى الأسس الصحيحة غير السالبة، مثلاً x2-4x+7 تعتبر متعددة الحدود ونطلق عليها اسم الدالة التربيعية، بينما x2-4/x+7x3/2 فهذه الدالة ليست متعددة الحدود لأن الحد الثاني يتضمن قسمة على المتغير x، ولوجود حد يحتوي على أس ليس بعدد صحيح وهو 3/2.
فنستنتج أن كثيرة الحدود هي دالة أو تركيب جبري رياضي بسيط، فهو لا يحوي على عمليات سوى الضرب والجمع، وقابل للمفاوضة بلا نهاية، بالإضافة إلى احتوائه على مشتقات من جميع الرتب في النقاط جميعها.
مرحبا بكم زوارنا الأعزاء يسعدناأن أرحب بكم في موقع لمحه معرفة الذي يقدم لكم الحل الوحيد الصحيحة عن السؤال التالي
الخصائص العامة لكثيرات الحدود
المتغير الأحادي هو تعبير عن النموذج ، حيث يكون عددًا صحيحًا ثابتًا و أيضاً يكون غير سالب، و ثابت و يمكن أن يكون على سبيل المثال عدد صحيح أو منطقي أو حقيقي أو معقد.
كثير الحدود هو مجموع عدد كبير جدًا من monomials، بمعنى آخر إنه تعبير عن النموذج فإذا كان اثنان أو ثلاثة فقط من المجموعات غير صفرية ، فيُقال إنها ذات الحدين والثلاثية حدود، على التوالي.
الثوابت هي معاملات كثيرة الحدود، يُشار إلى مجموعة كثيرات الحدود مع المعاملات في المجموعة، فمثلاً يمكننا القول، هي مجموعة متعددة الحدود ذات المعاملات الحقيقية.
يُطلق على الأس درجة كثيرة الحدود ويُرمز إليها على وجه الخصوص، تُسمى كثيرات الحدود من الدرجة الأولى والثانية والثالثة الخطية والتربيعية والمكعبية، فإن كثير الحدود الثابت الغير الصفري له درجة 0 ، بينما يتم تعيين كثير الحدود الصفري الدرجة لأسباب أخرى. مثال f (x)=x3(x+1)+x، g(x)=2x4-x3-2x2+1 فهذا المثال يعتبر كثير الحدود مع معاملات عدد صحيح من الدرجة 4، أما f(x)=0x2-21/2+3 فهو كثير حدود خطي مع معاملات حقيقية.
يمكن إضافة أو طرح أو ضرب أي اثنين من كثيرات الحدود ، وستكون النتيجة كثيرة الحدود.[2]
جذور التوابع كثيرة الحدود
نتذكر أنه عندما يكون x-a) (x-b)=0) ، نعلم أن a ، b, هما جذرا للدالة، (f(x)=(x-a) (x-b ولكننا الآن يمكننا استخدام العكس، والقول أنه إذا كان a و b جذور، فيجب أن تكون وظيفة كثير الحدود مع هذه الجذور هي المعادلة (f (x) = (x – a) (x – b ، أو مضاعف لها.